Appendix B

CODE

B.1 Thebasic equation to be solved

The basic equation to be solved is equation (A.97) as developed in Appendix A
and reproduced below. The observed K-Coronal intensity is given by equation (B.1). The
expressions for physical parameters in equation (B.1) in terms of independent variables
are given in equation (B.2). Equation (B.3) gives the parameters in equation (B.1) for

which suitable modedl's or actual measurements need to be used.
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u, (A") =limb darkening coefficient
f(\') = extraterrestrial solar irradiance
N, (rR.,, )= electron density model
T(rR,, ) =coronal temperaturemodel
W(R,,, )= solar wind model
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B.2 Approximationstothe jd)\' integral

Consider the exponent in equation (B.1) be represented by y as shown in equation

(B.4).

[

A
y= ¢/ wherea = (B.4)

2Ab C

A- )\’(1 +2b° cosooWJ

The first approximation to be made on equation (B.4) is given in equation (B.5).
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This approximation is justified on the grounds that the speed of light ¢ (3><1O5)
km/sec is much larger than the thermal electron velocity g (5500 km/sec) so that a

difference of about 10 Angstroms between A and A’ would hardly have any effect on the

vaueof A.

Then differentiating equation (B.4) with respect to A" together with the approximation
given by equation (B.5) gives equation (B.6).
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The second approximation to be made on the integration limits in equation (B.4) is given

by equation (B.7).
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Using the limits derived in equation (B.7), the exponent in equation (B.1) together with

all other A" dependent parameters reduces the integral over jd)\' to equation (B.8).
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B.3 b,Qj*andQ}* intermsof theindependent variables w, ¢ and x

From equation (B.2) the expression for b is given by equation (B.9).
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Using the trigonometric identity cos(Zy) = 2co0s’ (y)—l on equation (B.9) together with

(B.9)

expressions for cos{m—®), sinx,cosx andr from equation (B.2) gives the following

expression for b, as shown in equation (B.10).
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From equation (B.2) the expression for Qf}*is given by equation (B.11).
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Now, using the relationships sin(2y) =sn® and sina = w from equation (B.2)
sin

and the trigonometric identities si n(2y) =2sinycosy and sin®+cos® y=1o0n equation

(B.11) reduces equation (B.11) to equation (B.12).
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The expression for cosy asafunction of (w,¢,x) isgiven by equation (B.10).
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Again, from equation (B.2) the expression for QR*is given by equation (B.13).
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And using the relation sina =smn—sm from equation (B.2) in equation (B.13) gives

sn®©
equation (B.14).
=3 5 (1-sin®wsin? ¢) (B.14)
16m

B.4 Rewriting the basic equation with all parameters expressed in terms of the
independent variables (,¢,x,y)
With change of variables introduced in section B.2 and the relationships
developed in section B.3 the expression for the observed K-Coronal intensity is given by
eguation (B.15). The expressions for the physical parameters in equation (B.15) in terms

of the independent variables are given in equation (B.16). Equation (B.17) gives the
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parameters in equation (B.15) for which suitable models or actual measurements need to

be used in terms of the given distance p and observed wavelength A .
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u, (&) =limb darkening coefficient
f(§)=extraterrestrial solar irradiance

)\(1+ Zgby)
E:

1+ 2b? cosw Y

c
N WXx? +p°Ry,. )=e|ectron density model
T(yx*+p°R

) =coronal temperaturemodel

solar

W( X? +p°R. )=so|ar wind model

B.5 Changingtheindependent variable cosw to cos®

Consider the integral in equation (B.15) as shown in equation (B.18).
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From equation (B.2) the expression for cosw and O are given by equation (B.19) and

equation (B.20), respectively.
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Substituting cos@ = equation (B.20) can be written as shown in equation (B.21).

— 2
cosoo=cos{sin'l{ 12 MZD (B.21)
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Differentiating equation (B.21) with respect to p gives equation (B.22).
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And the limits on the integration Id cosw will change to the following form.

cos (I)*

From equation (B.16) the expression for p can be written as equation (B.23).
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Incorporating the change of variable from «w to 6 the basic equation (B.15) changes to
equation (B.24). ). The expressions for physical parametersin equation (B.24) in terms of
independent variables are given in equation (B.25). Equation (B.26) gives the parameters
in equation (B.24) for which suitable models or actual measurements need to be used in

terms of distance p and observed wavelength A .
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W( X?+p°Ry,, )=so|ar wind model

N WXx? +p°Ry,. )=e|ectron density model
T(yx* +p°Ry,, ) =coronal temperaturemodel
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B.6  Expression for theextraterrestrial solar irradiance f(E)
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Figure (B.1). The plot of extraterrestrial solar irradiance VS
wavelength obtained with a Fourier Transform Spectrometer at the
McM ath/Pier ce Solar Telescope on Kitt Peak, Arizona.

The spectrum of extraterrestrial solar irradiance shown in figure (B.1) was
downloaded from ftp.noao.edu/fts/fluxatl. The spectrum was then recreated in intervals
of 0.0025 Angstroms through linear interpolation. The reasons for this change will be

apparent in section (B.10). Here f(ﬁ) is the wavelength dependent extraterrestrial solar

irradiance with wavelength & measured in Angstroms.
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B.7 Expressionsfor thelimb-darkening coefficient u, (£)
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Figure (B.2). The plot of limb-darkening coefficient versus wavelength

with linear approximation super imposed.
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Using the wavelength dependent limb-darkening coefficient from Astrophysical

Quantities by Allen the following linear fits were made for the different wavelength

regions.

Q) 3000 — 3200 Angstroms

5380 0.11x§
u = -
(&) 200.0 200.0

2 3200 — 3700 Angstroms

(€ - 3220.0)x0.120

u,(€)=0.922- 1800

(©)) 3700 — 5000 Angstroms

(€ - 3700.0)x 0.212

u,(€)=0.862- 13000

(4) 5000 — 5500 Angstroms

625.0 0.06x§
u,\§)= -
1(€) 500.0 500.0

In the above equations & isthe wavelength measured in Angstroms.
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B.8 Expression for the coronal electron density model N_|\/x* + p? lear)

If the eclipse takes place at sunspot maximum, the corona has an approximate
circular form. This means that the coronal rays are most probably equally distributed
between the polar and the equatorial regions of the Sun. Since the Sun is expected to
reach sunspot maximum in the year 2000 the solar corona at the August 11, 1999 tota
solar eclipse will assumed to be of circular form. This assumption justifies using a radial

dependent expression for the electron number density.

From the analysis of the photometric data on ten eclipses from 1905 to 1929

Baumbach (1937) deduced the following expression for the coronal electron density.

N, (r)=10%(0.036r =% +1.55r = +2.99r *Jem?

(B.31)
where r =/x* +p°
Cram (1976) used the expression given in equation (B.32).
N — 1.67 X 10(4+4.04/r) -3
() o (B.32)

where r =/x? +p?

Equation (B.32) agrees within 2% in the region 1.5 < r < 2.0 to the minimum equator
model given by Van de Hulst (1950). In this code the electron density model given by
equation (B.31) was used. Figure (B.3) shows the electron density plots given by

equation (B.31) and equation (B.32).
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Figure (B.3). The plot of electron number density
versus the radial distance from the solar surface for
the two models given by equation (B.31) and
equation (B.32).

B.9 Expressions for the coronal temperature model Tl/x? +p2Rsolar) and the

solar wind model W/x? + szsoIar)

In this code the corona is considered to be isothermal which implies that that the
temperature T is a constant. As regards the solar wind W, it is considered to be radial,
isotropic and constant. The idea is to construct multiple models for different
combinations of temperature T and solar wind velocity W. Nevertheless, the code does
not restrict from applying a coordinate dependent temperature and wind profiles that are

measured independently.
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B.10 Evaluation of theintegrals

Rewriting equation (B.24) incorporating all of the parameters introduced in

sections B.6 to B.9 give equation (B.33) and (B.24) for 1;*and 15, respectively.
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0, =6.677x10™ cm?
R, =6.96x10® cm
AU =1.496%10" cm

(B.35)

From equation (B.33) and equation (B.34) the total observed intensity is given by

equation (B.36).

ra A, 0) =152 (A p) + 15 (A, p) (B.36)

1. Evauation of the TA(x)dxintegral

The above integra is evaluated using a 20-point Hermite polynomial expansion as

shown in equation (B.37).
[AGRx= [(a)er b~ ox (837
03 Al 0w

where h, and w, are the Hermite polynomials and the associated weights, respectively.
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2n
2. Evaluation of the jB(¢)d¢ integral
0

This integral is evaluated using 20-point trapezoidal composite rule as shown in

equation (B.38).

2j‘B(¢)d¢ D%(2x§8(¢j)-5(¢0)_8( 20)) Where

=0
21— 0 (B.38)
hg =
20
¢j =0+h; x]j

1
3. Evauation of the IC(p)dp integral
0

This integral is evaluated using 10-point trapezoidal composite rule as shown in

equation (B.39).

(B.39)

:jc(u)du D%(ngcmj)—c(uo)_c( 10)) where

h, =1—0

10
M, =0+h. xk

4. Evauation of the TD(y)e‘yzdyintegral

Thisintegral is evaluated using a 12-point Hermite polynomial expansion as shown in

equation (B.40).

ol ay oy 0, ®40

where h, and w, are the Hermite polynomials and the associated weights, respectively.
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Consider the integral jD(y)e'yzdy itsy dependent parameters and the expansion outlines

in equation (B.40) in equation (B.41).

jD(Y)e'yzdy = T1 - u, (&) +pu, (E)f (E)e dy

_;ul(z)

where& =£(y)
oy trullrw bl ),

= 1-juk)

-3 k) “( Lt o+ 26 (e ),

_11_7 | |11_f A&
5uil&) Suile) _n

)\(1+2th|)
C

1+208 %
C

whereg, =

Due to the rapid intensity variations associated with the Fraunhofer lines, as

evident in figure (B.1), this effect is included by taking the mean value for f(g,) over
each interval in the Hermite polynomia expansion coefficients h,. The mean is then

given by equation (B.42).
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(B.42)

In order to evaluate the integral in equation (B.42) the following procedure was

followed in order to expedite the calculation.

1. The extraterrestrial solar irradiance spectrum was recreated in intervals of 0.0025

Angstroms ().
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. For a given set of values for (x,q),u) from the integrals (Idx, Idcl), jdu) the values

(nuppe, Miower Nr ) were calculated.

: (r]upper N iower ) were assigned new values (r|'upper M lower ) which are divisible by 0.0025

and closest of (') 10 (Nupper s Miower )-

. Thevaues (f (r]upper ),f (n,ower )) now corresponded to (r|'upper M lower )

. This procedure allowed the integral to be expanded in intervals of 0.0025 Angstroms.

. Within the range of 0.0025 Angstroms the limb-darkening coefficient U,

extraterrestrial solar irradiance f could be assumed to be a constant. This allows for

writing equation (B.42) as shown in equation (B.43).
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u 3
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nyin +

fower +0.0025A° e +0.0050A°
” j —ul(n) f(r|)jr|+n j u, (n) f(n)in +
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Now to elaborate on the method, by which the integration is expedited, consider the
following table. Columns 1 and 4 are from section B.6 and columns 2 and 3 are from

section B.7. HereT isdivisible by 0.00025.

Table (B.1). The dependence of the extraterrestrial solar irradiance and the
limb-dar kening functions with the wavelength.. The columns 1 and 4 are from
section (B.6) and columns 2 and 3 are from section (B.7).

Wavelength n 1-u,(n) u,(n) Extraterrestrial

in Nanometers TR TR Solar

(nm) 1—§u1(n) 1‘§U1('1) irradiancef ()

T Al Bl Cl

T+0.00025 A2 B2 C2

T+0.00050 A3 B3 C3

T+0.00075 A4 B4 C4

T+0.00100 A5 B5 C5

T+0.00125 A6 B6 C6

T+0.00150 A7 B7 C7

T+0.00175 A8 B8 C8

T+0.00200 A9 B9 C9

continued continued continued continued

In the code T is 300.00025 nm and then increases in intervals of 0.00025 nm to

550.00000 nm.
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Now create a new table with each row reflecting the cumulative sum of table (B.1) for the

columns 2, 3 and 4.

Table (B.2). Cumulative values of the columns 2,3 and 4 of table (B.1).

T Al*C1 B1*C1 Cl
T+0.00025 A2*C2 B2*C2 C2
T+0.00050 A3*C3 B3*C3 C3
continued continued continued continued

In the code the following format is used, where columns 2 and 3 are multiplied by

column 4 of table (B.2).

Table (B.3). Multiplying column 4 of table (B.2) with column 2 and 3 of table (B.2).

Thisistheformat of the table used by the code.

T A1*Cl B1*C1

T+0.00025 (A1*CL)+(A2*C2) (B1*C1)+(B2*C2)

T+0.00050 (A1*C1)+(A2*C2)+ (B1*C1)+(B2*C2)+
(A3*C3) (B3*C3)

T+0.00075 (A1*C1)+(A2*C2)+ (B1*C1)+(B2*C2)+
(A3*C3)+ (A4*C4) (B3*C3)+ (B4*C4)

continued continued continued
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Going back to equation (B.43) the integrals could be written as a summation, as

shown in equation (B.44). Figure (B.4) illustrates the evaluation of the first integral of

equation (B.44) where the integration under each interval is approximated as the area

under the square. This procedureisjustified on ground of the very small interval.

(n)

1 M 1-
= | +() f(n)in + = f(nkin
% o 1-§u (n) % o 1-§u (n)
Nlpper Nupper
n 57 ol o). ‘;A" > _ul.(n) f(n)
R o 1 1“5“ (rl) AL 1_§u|(r|)
of 0.0025A° of 0.0025A°

where An = 0.0025A°
n R = r]'upper - IFlllower

f(r 1—U1(I'|') A
n{l-;ul(n')

A’ A ==

0.00025 nm
300.00025 nm 5

.
Nover Nopper

—
v

Figure (B.4). Illustrating the integration procedure of the first

integral in equation (B.44).
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Taking the cumulative value of the parameter reflected on the y-axis of figure (B.4)

would give the following, as shown in figure (B.5).

1
e [ 1-Zu,(n)

2(R)

Row R

2(P)

Row P

’

\

\

\

\

\

\

\

\

\

\

! L L L L L L L L L L L L L L L L L |-
T = A A"

300.00025 nm ’ P 550.00000 nm
lower n upper

Figure (B.5). Plot of the cumulative y-axis values of figure (B.4) against the
wavelength n'.

The same procedure as above could be performed for the second integral in equation

(B.44) too.
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In terms of expediting the calculation of the integral presented in equation (B.42),
equation (B.44) alows the code do the calculation in two easy steps in conjunction with

table (B.3) and illustrated by figure (B.5) for the first integral, as follows.

1. Find the corresponding row numbers, say, rows (R,P), respectively, which equal the

values (r|'upper N ower ) in column 1 of table (B.3) and as depicted in figure (B.5).

2. Find the valuesin columns 2 and 3 corresponding to the rows (R,P) in table (B.3) and

as shown by the arrows cutting across the y-axisin figure (B.5).

3. Now calculate [(2(R) - 2(P))+p(3(R) - E’,(P))]xs—rI where the numbers correspond

R

to the column numbers. The first part 2(R) —2(P) corresponds to the first integral in
equation (B.44) and the second part 3(R) —3(P) corresponds to the second integral

2(R) -2(P))

in equation (B.44). In figure (B.5), ( evaluates the first integral in

Nk

equation (B.44).
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B.11 Thesymbolsused in the code

The following symbols have been used in the code.

X - X
¢y
M-z

nupper - cetaU

- cetalL

I’.Ilower
Mo — A0
I"|’|OW6|' - a(o’t)

h, - hermite_12())
W, - Weights_lz(l)
h, — hermite_20(i)
wW; - weights_ZO(i)
b - bb

p - rho

A - lambda

In the code table (B.3) is given by 3000 5500 _cum_irradiance.dat

264

(B.45)



From equation (B.2) the following relationships could be derived.

angle_1 = sin(w)
sin(6)
X +p? (B.46)

sin(cos™ (cos))

X2 +p2

sin{cos™ ()

angle_2 = cos(w)

= cos(si n~(angl e_l)) (47

angle_3=cos(x)

= * (B.48)

VX2 +p?

angle_4=sd n(x) (B.49)

=g n(cos‘1 (angl e_3))

angle_5 = cos(nt- ©)

= cos(w)cos(x) + sin(w)sin(x)sin(¢) (B.50)

=angle_2xangle_3+angle_1xangle 4xsi n(y)

angle_6= (T[— @) (B.51)
= cos™ (angle_5)
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bb=b

- cosfy)
=cos(n_2 @]
o { angl2e_6)

(B.52)

From equation (B.16) the following relationships could be derived.

30, (B.53)

' B.54
:1.0+Sin2(¢)sin2(w)—4(1_b2)32 ( )

=1.0+sin?(y)(angle_1)’ - 4(1 - (bb)? Xbb)2
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B.12 ThelDL code
The following is the code written in IDL where (;) is acomment symbol and ($) a
command continuation symbol.

;README

;DECIDE ON THE RADIAL WIND VELOCITY IN KM\SEC

;DECIDE ON THE ISOTHERMAL CORONAL TEMPERATURE IN MK
;DECIDE ON THE VALUESFOR RHO IN SOLAR RADIUS

;000.0 0.50 1.10

;400.0 2.00 1.30

;800.0 1.50 1.40

;ENTER THE ABOVE INFORMATION IN BATCH_FILE.PRO

;COMPILE ECLIPSE_SIMULATION.PRO
;RUN ECLIPSE_SIMULATION.PRO

;THE DATA WILL BE STORED AS
;"ES w000.0 T0.50 r1.10.dat'
;'"ES w400.0 T2.00 r1.30.dat'
;'"ES w800.0 T1.50 r1.40.dat'

;CALULATING AVERAGE INTENSITY IN THE REGION [cetaU,cetal ]
function KURUCZ_TABLE,a,z,cetalU,cetal

u=long(round((doubl e(cetal)-300.00025d0)/0.00025d0)) ;a(0,0)=300.00025
t=long(round((double(cetal)-300.00025d0)/0.00025d0)) ;a(0,0)=300.00025
interval=a(0,u)-a(0,t)

irradiance=((a(1,u)-a(1,t))+z* (a(2,u)-a(2,t)))* 0.00025d0/interva
;microwatts/'cm squared/nm

return,irradiance ;microwatts/cm squared/nm

end

;CALCULATE FOURTH_INTEGRAL PARAMETRSAND THE VALUE
function calculate fourth_integral_value ,alambda,rho,hermite_12,weights 12,x,y,z,w,T
g =5508.0*sgrt(T)  ;thermal electron velocity in km/sec
¢ =3.0d5 ;velocity of light in km/sec
fina_sum_4=dblarr(2,1)
angle_1=sin(acos(z))/sqrt(x*2+rho"2) ;sin(omega)
angle_2=cos(asin(angle_1)) ;cos(omega)
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angle 3=x/sgrt(x"2+rho"2) ;cos(chi)
angle_4=sin(acos(angle_3)) ;sin(chi)

angle 5=angle 2*angle 3 + angle 1*angle 4*sin(y)
angle 6=acos(angle 5)

r=sgrt(x"2+rho”"2) ;radius
aa=1.0d8* (0.036/(r"1.5) + 1.55/(r"6) + 2.55/(r"16))  ;Baumbach model
bb=cos(angle 6/2.0) ;cos(gamma)
cc_t=1.0-(sin(y)*2)* (angle_1"2) ;tangential

cc_r=1.0+(sin(y)"2)* (angle_1"2)-4.0* (1.0-bb"2)* (bb"2);radia
dd=(1.0*2)/(sgrt(x"2+rho"2)* sgrt(x"2+rho"2+z"2-1.0))

;changing d(cos(omega))to d(mu)

ee=1.0+2.0*bb"2*angle_2* (w/c) ;wind component

N=11; Nth order hermite polynomial expansion is used
sum_i_tangential=0.0
sum_i_radia =0.0

for i=0,N do begin; first_loop

if (i eq0) then begin
cetaL =(lambda-lambda* (g/c)* bb* hermite_12(i))/ee
;nanometers
end elseif (i ne 0) then begin
cetal =(lambda-lambda* (g/c)* bb* (hermite_12(i)+hermite_12(i-1)))/ee
;nanometers
endif

if (i eq11) then begin
cetaU=(lambda-lambda* (g/c)* bb* hermite_12(i))/ee
;nanometers
end elseif (i ne 11) then begin
cetalU=(lambda-|ambda* (g/c)* bb* (hermite_12(i)+hermite_12(i+1)))/ee
;nanometers
endif

if (((cetal or cetal) It 300.00025d0) or ((cetal or cetal.) gt 550.00000d0)) then begin
final_sum_4(0,0)=999999999999.9999
final_sum_4(1,0)=999999999999.9999
goto,terminate_4

endif
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;CALCULATING THE AVERAGE INTENSITY CORRESPONDING TO
;[cetaU,cetal |

irradiance=KURUCZ_TABLE(a,z,cetaU,cetal) ;microwatts'cm sguared/nm
FC=irradiance* 1.0d-7 ;W/cm sguared/Angstroms

sum_i_tangential=sum_i_tangential+weights 12(i)* (FC)
sum i radia =sum_i_radia +weights 12(i)* (FC)

endfor ;loop_i

final_sum_4(0,0)=sum_i_tangential* aa* cc_t*dd* (1.0/ee)
fina_sum_4(1,0)= sum_i_radia*aa*cc_r*dd*(1.0/ee)
terminate 4:

return,final_sum 4

end

;CALCULATE THIRD_INTEGRAL PARAMETRSAND THE VALUE
function calculate third_integral_value ,alambda,rho,hermite_12,weights 12,x,y,w,T

;THIRD INTEGRAL BOUNDS
a3=0.0

b3=1.0

n3=10.0

h3=(b3-a3)/n3
f3=fix(n3)

sum_z t=dblarr(f3+1)
sum_z_r=dblarr(f3+1)
total_sum z t=0.0
total_ sum z r=0.0
fina_sum_3=dblarr(2,1)

for r=0,f3 do begin

z=a3+r*h3 ;mu=cos(theta)

final_sum 4=calculate fourth integral value $

(alambda,rho,hermite_12,weights 12,x,y,z,w,T)

if (final_sum_4(0,0) eq 999999999999.9999) then begin
final_sum_3=final_sum 4
goto, terminate 3
endif

sum_z t(r)=final_sum_4(0,0)

total_sum_z t=total sum z_ t+final_sum_4(0,0)
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sum_z_r(r)=final_sum_4(1,0)
total_sum_z r=total_sum_z r+fina_sum_4(1,0)
endfor

final_sum_3(0,0)=(h3/2.0)* (2.0*total_sum_z_t-sum_z_t(0)-sum_z_t(n3))
final_sum_3(1,0)=(h3/2.0)* (2.0*total_sum_z r-sum_z r(0)-sum_z_r(n3))
terminate_3:

return, final_sum_3

end

;:CALCULATE SECOND_INTEGRAL PARAMETERSAND THE VALUE
function calculate_second_integral_value ,alambda,rho,hermite_12,weights 12,x,w,T

;SECOND INTEGRAL BOUNDS
a2=0.0

b2=2.0*!pi

n2=20.0

h2=(b2-a2)/n2
f2=fix(n2)
sum_y_t=dblarr(f2+1)
sum_y_r=dblarr(f2+1)
total_sum_y t=0.0
total_sum_y r=0.0
final_sum_2=dblarr(2,1)

for v=0,f2 do begin

y=a2+v*h2 ; in radians

final_sum 3=calculate third integral value $

(alambda,rho,hermite_12,weights 12,x,y,w,T)

if (final_sum_3(0,0) eq 999999999999.9999) then begin
fina_sum_2=final_sum 3
goto, terminate 2
endif

sum_y_t(v)=fina_sum_3(0,0)

total_sum_y t=total sum_y t+fina_sum_3(0,0)

sum_y r(v)=fina_sum_3(1,0)

total_sum_y r=total_sum y r+fina_sum 3(1,0)

endfor
final_sum_2(0,0)=(h2/2.0)* (2.0*total_sum_y t-sum_y t(0)-sum_y t(n2))

final_sum_2(1,0)=(h2/2.0)* (2.0*total_sum_y_r-sum_y r(0)-sum_y r(n2))
terminate 2:
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return, final_sum 2
end

;CALCULATE FIRST INTEGRAL PARAMETERSAND THE VALUE
functioncalculate first_integral value $
,alambda,rho,hermite_12 weights 12 hermite_20,weights 20,w,T

;FIRST INTEGRAL USING HERMITE POLYNOMIALS
n1=19

sum_x_t=dblarr(nl+1)

total_sum x t=0.0

sum_x_r=dblarr(n1+1)

total_sum x r=0.0

intensity=dblarr(2,1)

for h=0,n1 do begin
x=hermite_20(h)
final_sum 2=calculate second integra_vaue $
(alambda,rho,hermite_12,weights 12,x,w,T)
if (final_sum_2(0,0) eq 999999999999.9999) then begin
intensity=final_sum_2
goto, terminate_1
endif
sum_x_t(h)=final_sum_2(0,0)*weights 20(h)* exp(x*x)
total_sum x_t=total sum x_t+sum_x_t(h)
sum_x_r(h)=final_sum_2(1,0)*weights_20(h)* exp(x* x)
total_sum x_r=tota _sum_x_r+sum_x_r(h)
endfor

sigma=6.677E-25 ; Thomson Scattering Cross Section cm squared
AU=1.49597870E+13 ;cm-symbol D in CRAM
solar_radius=6.96E+10 ;cm-symbol Rin CRAM

constant=(3.0* sigma* (AU)"2.0)/(16.0* solar_radius* (!pi)*(2.5))

intensity(0,0)=constant*total_sum_x_t ;Watts/cm squared/Angstroms/steradians
intensity(1,0)=constant*total_sum_x_r ;Watts/cm squared/Angstroms/steradians

terminate 1.
return,intensity
end

print,'starting time ', systime(0)
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;FILESTO BE READ
;READING THE KURUCZ EXTRATERRESTRIAL IRRADIANCE AT 0.00025A
;INTERVALS FROM 3000A TO 5500A

a=dblarr(3,10000001)
openr,2,'3000_5500_cum_irradiance.dat’
readf,2,a

close,2

‘READING THE ROOTSOF 12TH ORDER HERMITE POLYNOMIALS
‘HANDBOOK OF TABLES OF MATHEMATICS.SELBY 3RD EDITION PAGE
1843

hermite_12=dblarr(1,12)
openr,3,'hermite_12_roots.dat’
readf,3,hermite 12

close,3

‘READING THE WEIGHTSOF 12TH ORDER HERMITE POLYNOMIALS
‘HANDBOOK OF TABLES OF MATHEMATICS.SELBY 3RD EDITION PAGE
1843

weights_12=dblarr(1,12)
openr,4,'hermite_12 weights.dat’
readf,4,weights 12

close4

;READING THE ROOTS OF 20TH ORDER HERMITE POLYNOMIALS
;HANDBOOK OF MATHEMATIC FUNCTIONSEDITED BY M. ABRAMOWITZ
;AND L.A. STEGUN PAGE 924

hermite_20=dblarr(1,20)
openr,5,'hermite_20_roots.dat’
readf,5,hermite_20

close,5
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;READING THE WEIGHTS OF 20TH ORDER HERMITE POLYNOMIALS
;HANDBOOK OF MATHEMATIC FUNCTIONSEDITED BY M. ABRAMOWITZ
;AND L.A. STEGUN PAGE 924

weights 20=dblarr(1,20)
openr,6,'hermite_20 weights.dat'
readf,6,weights 20

close,6

;READING THE BATCH_FILE.PRO
;THISFILE CONTAINSTHE WIND,TEMPERATURE AND RHO VALUES

data=read ascii('batch_file.pro',$
comment_symbol="xxx.x',data_start=1)
data_elements=n_elements(data.fieldl)

counter=(data_elements/3)-1
for j=0,counter do begin

wind= data.field1(3*j+0);wind in km\sec
temp= datafield1(3*j+1); Temperaturein MK
rhoo= data.field1(3*j+2);rho in solar radius

str_w=string(wind)
parts=str_sep(str_w,".")
wl=partg 0]
w2=strmid(partg 1],0,1)

str_t=string(temp)
parts=str_sep(str_t,".")
t1=partg 0]
t2=strmid(parts1],0,2)

str_r=string(rhoo)
parts=str_sep(str_r,".")
rl=partg/ 0]
r2=strmid(parts[1],0,2)

w=double(wind)

T=double(temp)

rho=double(rhoo)

print,'wind =",w," km\sec temp ="temp,' MK $
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rho =',rhoo," solar radius
'RECORDING THE OUTPUT

openw,9,'ES w'+trim(w1,'(i3.3)")+".'+trim(w2,'(i1.1))+ T'$
+Hrim(tl,'(i1.1)")+". +trim(t2,'(i2.2)")+'_r'+trim(rl,'(i1.1)")+".'$
+trim(r2,'(i2.2)")+'.dat’

for r=0,1000 do begin ;370.0 nmto 470.0 nm
lambda=370.0d0 + r*0.1d0 ;nano meters

intensity=calculate first_integral_value $
(alambda,rho,hermite_12,weights_12,hermite_20,weights 20,w,T)
if (intensity(0,0) eq 999999999999.9999) then begin
print,'intensity(0,0) = 999999999999.9999 for $
lambda ="',lambda
goto, intensity out_of range
endif

total_intensity=intensity(0,0)+intensity(1,0);Watts/cm squared/Angstroms/steradians

print,'lambda=',lambda*10.0 ,' Angstroms,' $
intensity = 'total_intensity* 1.0E+7 ,$
' ergs/sec/cm squared/Angs/steradians
;print,'time =",systime(0)
printf, 9, format='(4E15.5)",|lambda* 10.0,total_intensity,intensity(0,0),$
intensity(1,0)
flush, 9

intensity_out_of range:
endfor ; ther loop for intensity

close, 9

endfor ; thej loop for batch_file
print,'ending time ',systime(0)
end
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An example of the input datainformation givenin BATCHFILE.PRO

Table (B.4). Theformat of theinput information on the wind velocity in
km/sec, isother mal temperaturein MK and the distanceto theline of

sight in SR.

Wind(km/sec) Temperature(MK) RHO(SR)
400.0 1.50 1.10
300.0 0.50 1.50
continued continued continued
XXX.X XX.X XX.X
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